miRNAs regulate stem cell self-renewal and differentiation
نویسندگان
چکیده
Stem cells undergo symmetric and asymmetric divisions to generate differentiated cells and more stem cells. The balance between self-renewal and differentiation of stem cells is controlled by transcription factors, epigenetic regulatory networks, and microRNAs (miRNAs). Herein the miRNA involvement in the regulation of stem cell self-renewal and differentiation is summarized. miRNA contribution to malignancy through regulating cancer stem cells is described. In addition, the reciprocal associations between miRNAs and epigenetic modifications in control of stem cell fate are discussed.
منابع مشابه
The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells.
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-trascriptional regulation of gene expression and diverse biological activities. They are crucial for self-renewal and behavior of embryonic stem cells, but their role in mesenchymal stem cells has been poorly understood. Recently emerging evidence suggests that miRNAs are closely involved in controlling key steps of mesenchymal stem ...
متن کاملEvaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells
Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملmiR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms.
The miR-294 and miR-302 microRNAs promote the abbreviated G1 phase of the embryonic stem cell (ESC) cell cycle and suppress differentiation induced by let-7. Here, we evaluated the role of the retinoblastoma (Rb) family proteins in these settings. Under normal growth conditions, miR-294 promoted the rapid G1-S transition independent of the Rb family. In contrast, miR-294 suppressed the further ...
متن کاملMicroRNAs and their roles in mammalian stem cells.
Discovered in Caenorhabditis elegans in 1993, microRNAs (miRNAs) make up a novel class of tiny, ~21-24 nucleotide, non-coding RNA species. Since its identification as a key component of a broadly conserved mechanism that regulates gene expression post-transcriptionally, the miRNA pathway has emerged as one of the most extensively investigated pathways of the past decade. Because of their potent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012